Boosting Weighted Linear Discriminant Analysis

نویسندگان

  • Kazunori Okada
  • Arturo Flores
  • Marius George Linguraru
چکیده

We propose a novel approach to boosting weighted linear discriminant analysis (LDA) as a weak classifier. Combining Adaboost with LDA allows to select the most relevant features for classification at each boosting iteration, thus benefiting from feature correlation. The advantages of this approach include the use of a smaller number of weak learners to achieve a low error rate, improved classification performance due to the robustness and stable nature of LDA, and computational efficiency. The performance of the proposed method was evaluated on artificial data and additionally on two popular independent data sets: the Iris Data Set and the Breast Cancer Wisconsin Diagnostic Data Set, both publicly available at the University of California at Irvine Machine Learning Repository. Experimental results showed the superior accuracy of the proposed method over LDA and AdaBoost combined with other types of weak classifiers. The weighted LDA algorithm was proven to be equivalent to the traditional LDA in the case of uniform weight distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Combining Rules in Bagging and Boosting

To improve weak classifiers bagging and boosting could be used. These techniques are based on combining classifiers. Usually, a simple majority vote or a weighted majority vote are used as combining rules in bagging and boosting. However, other combining rules such as mean, product and average are possible. In this paper, we study bagging and boosting in Linear Discriminant Analysis (LDA) and t...

متن کامل

Boosted-LDA for Biomedical Data Analysis

We propose a novel approach to boosting weighted linear discriminant analysis (LDA) as a weak classifier. Combining Adaboost with LDA allows selecting the most relevant features for classification at each boosting iteration, thus benefiting from feature correlation. The advantages of this approach include the use of a smaller number of weak learners to achieve a low error rate, improved classif...

متن کامل

An experimental study on diversity for bagging and boosting with linear classifiers

In classifier combination, it is believed that diverse ensembles have a better potential for improvement on the accuracy than nondiverse ensembles. We put this hypothesis to a test for two methods for building the ensembles: Bagging and Boosting, with two linear classifier models: the nearest mean classifier and the pseudo-Fisher linear discriminant classifier. To estimate diversity, we apply n...

متن کامل

Boosting in Linear Discriminant Analysis

In recent years, together with bagging [5] and the random subspace method [15], boosting [6] became one of the most popular combining techniques that allows us to improve a weak classifier. Usually, boosting is applied to Decision Trees (DT’s). In this paper, we study boosting in Linear Discriminant Analysis (LDA). Simulation studies, carried out for one artificial data set and two real data se...

متن کامل

Boosting Kernel Discriminant Analysis and Its Application on Tissue Classification of Gene Expression Data

Kernel discriminant analysis (KDA) is one of the most effective nonlinear techniques for dimensionality reduction and feature extraction. It can be applied to a wide range of applications involving highdimensional data, including images, gene expressions, and text data. This paper develops a new algorithm to further improve the overall performance of KDA by effectively integrating the boosting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011